

CHAPTER ACCELERATING CCUS

Adiverse commercial CCUS industry has begun to emerge in the PCOR Partnership region. Using a variety of business models, the active commercial CCUS projects are integrating private investment with federal and state incentives, such as the 45Q tax and Low-Carbon Fuel Standard (LCFS) programs. Further CCUS deployment in the PCOR Partnership region will build on the current commercial activity and be accelerated by facilitating the development of projects currently in the planning stages, supporting regional infrastructure, and investigating and addressing remaining barriers to widespread CCUS adoption.

CHALLENGES TO CCUS DEPLOYMENT

To accelerate commercial deployment of CCUS across the PCOR Partnership region, CCUS must be widely accepted as a suite of trusted, economical, and conventional technologies that are part of the overall carbon management solution. For this to happen, several challenges need to be addressed.

REGULATIONS AND PERMITTING – Although much has happened in the regulatory world of CCUS (e.g., states getting primacy, states establishing pore space ownership rulings, etc.), regulatory and permitting uncertainties (e.g., compliance risks) remain a challenge to accelerating CCUS deployment. Ongoing efforts to permit CCUS projects in states with and without Class VI primacy will clarify the permitting process and establish the needed pathways to receive all necessary project approvals.

LONG-TERM LIABILITY – The project operator usually has primary responsibility for the CO₂ storage project during the injection phase. However, monitoring and remediation responsibilities may vary in the postinjection period, which may last many decades. The uncertainty in the scale and duration of postinjection responsibility may make some CCUS project developers wary.

ECONOMICS – For companies to deploy CCUS technologies, they will bear costs associated with carbon capture, transportation, and storage. Companies need to understand the existing regulatory environment and tax and other incentive programs well enough to see prospective CCUS deployment as profitable over the long term, thus justifying the investment and acceptance of any risk.

TECHNOLOGY PROOF OF CONCEPT – Although several commercial-scale CCUS projects are in place, operational experience with CCUS technologies in real-world conditions is still greatly needed. Each large-scale carbon capture project that is successful leads to the next level of understanding and improvements in permitting as well as capture, transport, and storage technologies.

INFRASTRUCTURE DEVELOPMENT – Most of the large-scale CO_2 sources in the PCOR Partnership region are not near large CO_2 storage opportunities. Increasing the adoption of CCUS will entail cost-efficient means of moving captured CO_2 to areas with ideal geologic storage opportunities. Large-scale deployment of CCUS will require a marked increase in commitment by both government and industry to plan and build the needed CO_2 transportation infrastructure.

RAMPING UP CCUS DEPLOYMENT

ooking ahead, the PCOR Partnership plans to support CCUS deployment across the region through the following activities:

- 1. Build upon assessments of regional storage data to verify the target formations' ability to store CO₂.
- 2. Facilitate the development of the infrastructure required to transport CO_2 from the source to the injection site.
- 3. Facilitate the development of the rapidly evolving North American regulatory and permitting framework for CO₂ storage.
- 4. Identify opportunities for CCUS, and support development of projects by PCOR Partnership partners.
- 5. Continue collaboration with the other RCSP Program partnerships.
- 6. Provide outreach and education for CO₂ storage stakeholders and the general public.

Through these efforts, the PCOR Partnership will help CCUS projects overcome key challenges, including cost-effective capture of CO₂, through successful integration with fossil fuel conversion systems. Advances in CCUS technology and project deployment will allow continued access to safe, reliable, and affordable energy.

REGULATION

CUS policy is taking a prominent position in the climate management debate occurring at national, regional, and local levels, and the legal framework for the geologic storage of CO_2 continues to evolve.

In areas where extensive oil and gas production activities have taken place (in particular, EOR or acid gas injection), the regulatory framework is well established. In other jurisdictions, less regulatory framework may be in place for geologic storage of CO₂. Government organizations—which vary by jurisdiction may have oversight for various aspects of the CCUS project, including the permitting, construction, health and safety, liability, protection of water supplies, and monitoring. EPA has promulgated rules for various aspects of carbon management and reporting; many states are moving forward with their own rules and regulations to accommodate CCUS projects.

Because of the evolving nature of regulatory frameworks at various levels of government, this atlas provides general overviews of select rules and policies currently under debate; this atlas can be considered up to date as of February 2024, unless otherwise noted.

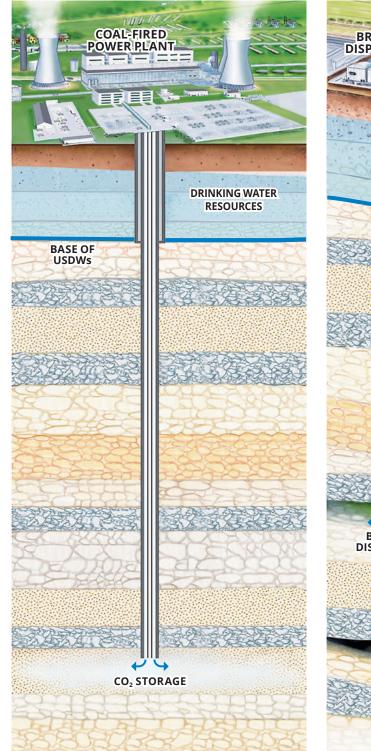
To facilitate the exchange of information, ideas, and experiences among oil and gas regulatory officials, the PCOR Partnership hosts Regulatory Roundup meetings. The meetings inform regional regulatory officials about the current status and evolving nature of regulations that affect CO₂ capture, compression, transport, injection for CO_2 storage, or CO_2 EOR. These meetings allow for improved coordination of regulatory strategies that will ultimately enhance opportunities for CO₂ storage and CO_2 EOR in the region.

PRIMACY

EPA creates minimum regulations, and the Safe Drinking Water Act (SDWA) establishes a process for U.S. states to apply to EPA for the authority to regulate underground injection. This is known as primary enforcement authority, or primacy. When a state demonstrates to EPA that it has established an appropriate level of statutory authority and administrative regulations, EPA grants the state primacy. Under the UIC (underground injection control) Program, primacy is distinguished by individual injection well classifications.

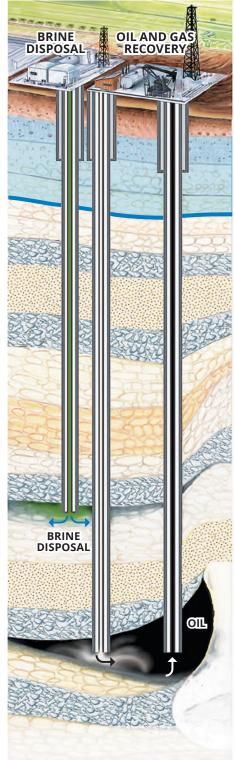
In the PCOR Partnership region, North Dakota and Wyoming both have received Class VI primacy. If state primacy has not been established, the EPA regional office enforces the federal UIC Program regulations.

UNDERGROUND INJECTION CONTROL PROGRAM

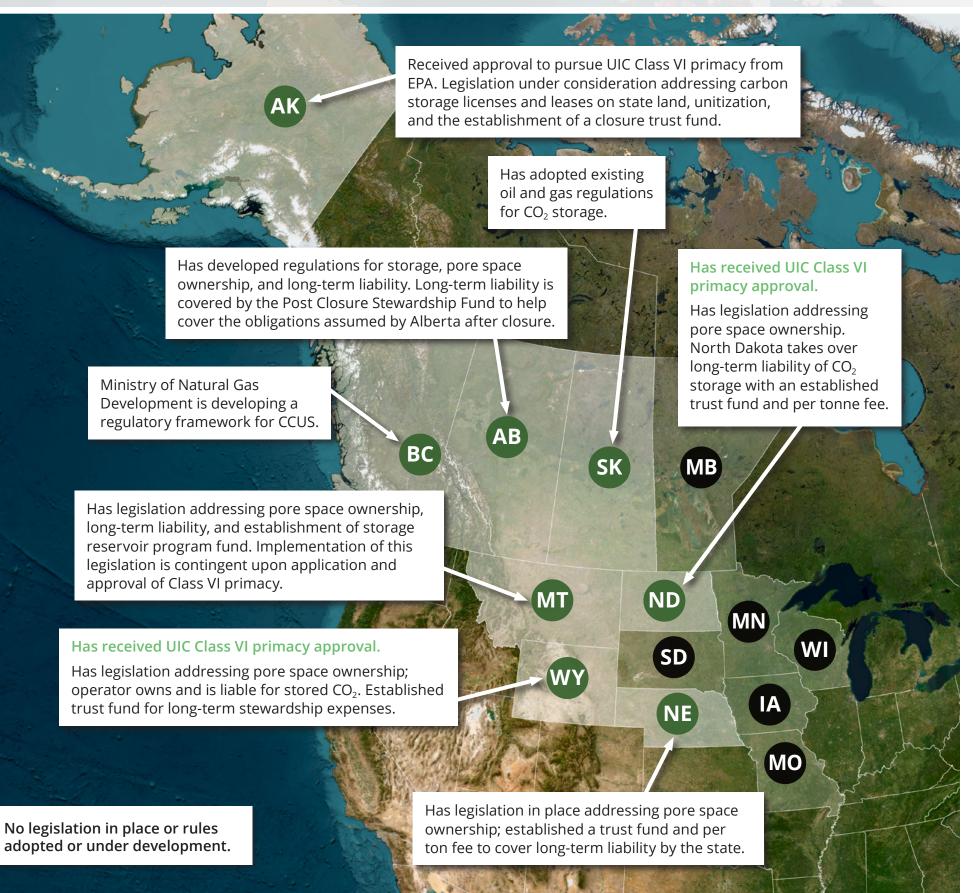

 \square egulations for CO₂ injection are established **K**under the SDWA UIC Program. The UIC Program is a U.S. federal regulatory program administered by EPA and designed to protect USDWs.

In December 2010, EPA published the federal requirements for Class VI wells, which are wells used to inject CO_2 for the sole purpose of geologic storage. Class VI wells have specific criteria in place to protect USDWs. These criteria include requirements for extensive site characterization, well construction, well operation, comprehensive monitoring, financial responsibility, and reporting. EPA acknowledges that CO₂ EOR stores CO₂ while producing oil during EOR operations and that CO₂ injection under Class II rules can recognize the incidentally stored volume.

Class II wells are used only to inject fluids associated with oil and natural gas production. A Class II well can either be used for disposal purposes to inject waste fluids associated with oil and gas production or to enhance oil and gas recovery. Injection of CO₂ for EOR is regulated and permitted as a Class II injection well.


CLASS VI WELLS

Inject CO₂ for Long-Term Storage to Reduce Emissions to Atmosphere



CLASS II WELLS

Inject Oil and Gas Production Fluids

REGULATORY STATUS

KEY CONCEPTS

PORE SPACE

Pore space can be defined as "the free space between the mineral grains of a geologic formation" or "a cavity or void, whether natural or artificially created, in a subsurface sedimentary stratum." In either case, the cavity or space is filled with some type of fluid prior to injection: typically oil and brine in an oil field or just brine in a DSF. During CO_2 injection, the injected CO_2 displaces most of the fluid originally in the pore spaces. When developing CO_2 storage projects, project developers need to ensure they have rights to the necessary pore space in a prospective storage formation.

In many countries, subsurface pore space is owned by the federal government. In the United States, only a handful of states have clarified pore space ownership: North Dakota, Wyoming, Nebraska, Alaska, and Montana. To access the pore space needed to store CO_2 , the CO_2 storage operator must pursue pore space access agreements with the parties that own the pore space. These agreements involve negotiations surrounding the value of the pore space. This value likely translates into payment terms of \$/tonne/unit of land. Forced unitization (or amalgamation) of pore space is permitted in some states. In this case, if some percentage of owners agree (e.g., 60%–80%), the remaining owners can be required to participate with equitable compensation. This approach is very similar to the unitization process used in the oil and gas industry. Until there is a broader adoption of defined pore space management policy, pore space access will remain an obstacle to widespread CCUS implementation.

LONG-TERM LIABILITY

Long-term liability is broadly recognized as a significant challenge to widespread CCUS. During and immediately after the active injection phase, it is generally understood that the injection operator carries the liability for items such as personal injury, subsurface trespass, mitigation of leaks, etc. The main challenge is determining the appropriate policy framework to manage CCUS sites after closure. The time frame for geologic storage site management could extend for many decades beyond site closure. Without a clear understanding of if and how the long-term liability can be transferred to local or federal government, the investment risk to initiate a CO_2 storage project will remain high. North Dakota, Montana, Nebraska, Wyoming, and Alberta have established policies to transfer long-term liability to the state/province. These policies are the foundation for expanding this concept to additional states and provinces.

TAX CREDIT

☐ irst enacted in October of 2008, Section 45Q of the U.S. tax Code provides a performance-based tax credit for carbon capture projects and is intended to promote investment in CCUS implementation. To boost response to the 45Q tax credit program and broaden eligibility to other industries, the 2018 Bipartisan Budget Act reformed the tax credit program. The revised 45Q reduced the cost and risk to private capital of investing in the deployment of carbon capture technology across a range of industries.

Changes included 1) a larger credit amount; 2) a start-of construction deadline and 12-year claim period; 3) allowing the credit for CO₂ utilization in addition to EOR and for DAC, as well as allowing smaller facilities to claim the credit; and 4) allowing owners of carbon capture equipment to claim tax credits instead of the entity capturing the CO₂, which facilitates tax equity investment.

The deadline to begin construction was further extended for 2 years, to January 1, 2026, in the Taxpayer Certainty and Disaster Tax Relief Act of 2020 (Division EE of the Consolidated Appropriations Act, 2021; P.L. 116-260).

P.L. 117-169, commonly referred to as the Inflation Reduction Act of 2022 (IRA), modified and further extended the Section 45Q tax credit. In addition to modifying the base credit rates and definition of qualified facilities, the IRA allowed a larger credit for qualified facilities or carbon capture equipment that meet certain prevailing wage and apprenticeship requirements. In addition, the IRA extended eligibility to claim the credit to certain nonprofits ("direct pay") and entities without ownership interests ("transferability") and extended the deadline to begin construction to the end of 2032.⁵⁹

	Equipment in service after 2/8/2018 and before 1/1/2023	Equipment in service after 12/31/2022 and under construction before 1/1/2033
Claim Period	12 years once facility is in service	12 years once facility is in service, 5 years if transferred
Annual Capture Requirements (metric tons)	Power: at least 500,000 DAC and other: at least 100,000	Power: at least 18,750, capture design capacity not less than 75% baseline emissions DAC: at least 1000 Other: at least 12,500
Credit Value (\$/metric ton)	Saline storage: up to $$50$ CO ₂ EOR and other: up to $$35$	Saline storage: base credit \$17 (\$36 for DAC), \$85 (\$180 for DAC) if requirements met CO ₂ EOR and other: base credit \$12 (\$26 for DAC), \$60 (\$130) if requirements met
Eligibility	Entity that owns the capture equipment and ensures the utilization or storage	Entity that owns capture equipment and ensures utilization or storage. Direct pay may apply for certain tax-exempt entities.

TAX CREDIT

In addition to federal tax incentives, North Dakota, Wyoming, and Montana offer a variety of tax incentives for projects involving CCUS.⁶⁰ For example, North Dakota eliminates sales tax on all capture-related equipment, CO₂ sold for EOR, pipeline construction, and CO₂ EOR infrastructure. In addition, North Dakota reduces the coal conversion tax when CO₂ is captured, allows for a 10-year property tax exemption on pipeline equipment, and eliminates oil and gas extraction tax for 20 years during tertiary CO₂ EOR. Wyoming has established tax incentives to spur CO₂ utilization. The state eliminates tax on the sale of CO₂ used in tertiary CO₂ EOR and allows for a severance tax credit when oil is produced from CO₂ injection. Montana offers a reduced market value property tax rate for carbon sequestration equipment. A notable law in Montana requires that all new coal plants capture and sequester at least 50% of their CO₂ emissions.

State	Incentives
North Dakota	Sales and use tax exemption Property tax exemption Gross receipts tax reduction
Wyoming	Sales tax exemption Severance tax credit
Montana	Reduced property tax

45Q Globally, the most progressive CCUS-specific incentive.⁶¹

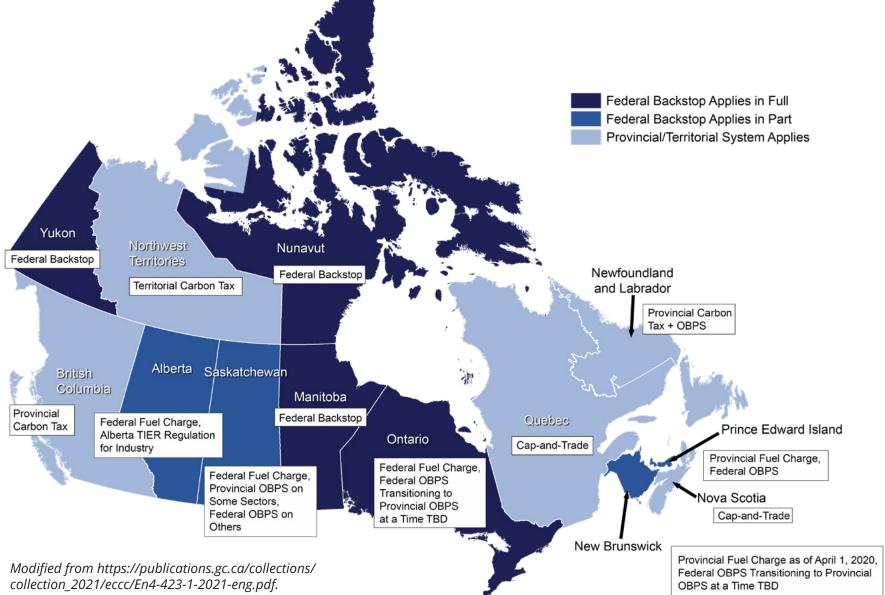
Recent Actions

May 2020	IRS proposes regulation for 45Q tax credits.
December 2020	Congress approves 2-year extension of 45Q. Construction must start by January 1, 2026.
August 2022	IRS expands eligibility qualifications and extends construction start deadline to 2032.
	IRS issues final regulations for "direct pay," allowing 45Q tax credits as payment for federal income tax.

LOW-CARBON FUEL MARKETS

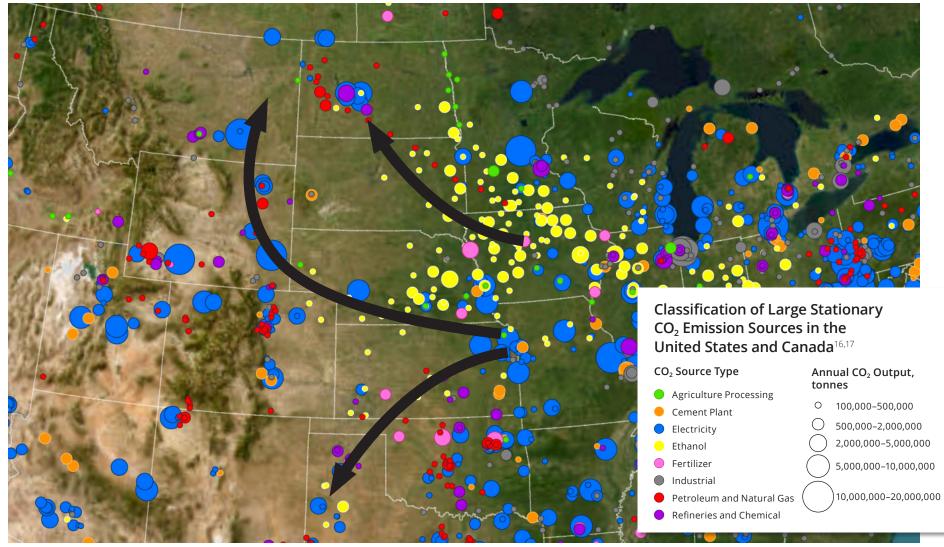
he objective of low-carbon fuel programs is to reduce the carbon intensity (CI) of fuels used for transportation, including gasoline, diesel, and their alternatives. The low-CI fuels that generate credits include ethanol. biodiesel. renewable diesel, compressed natural gas (CNG) and biogas, liquefied natural gas (LNG) and biogas, hydrogen, and electricity for electric vehicles (EVs). Currently, ethanol is the greatest contributor to the alternative transportation fuel market. By adding CCUS, these fuel producers are competitively able to market an even lower-CI-value fuel to petroleum importers, refiners, and wholesalers regulated by the LCFS Program.

The details and standards for these state government programs are determined by the legislators and regulatory agencies that develop and design them. California, Oregon, and British Columbia have active low-carbon fuel programs. Other areas of the United States looking to pass bills to establish low-carbon fuel programs are Washington State, Colorado, and several midwestern states. Canada and Brazil are also exploring these standards.


8 200 B

CANADIAN INCENTIVES

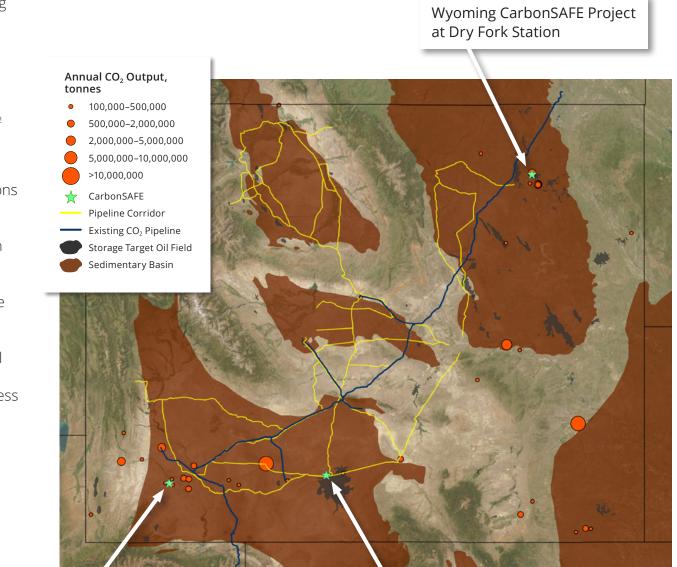
In its 2021 budget, the Canadian federal government proposed to introduce an investment tax credit for capital invested in CCUS projects, with the goal of reducing CO₂ emissions by at least 15 MMt annually. The investment tax credit, the Output-Based Pricing System (OBPS), will be available to multiple industrial sectors, including cement, refining, power generation, hydrogen generation, and DAC. The tax credit is not intended for CO₂ EOR projects. The credit is not yet active. It will take effect once parliament passes enabling legislation; the plan is to make it retroactive to 2022.^{62,63}


In October 2016, the Canadian Prime Minister announced the Pan-Canadian Approach to Pricing Carbon Pollution, which gave provinces and territories the flexibility to develop their own carbon pollution pricing system along with guidance to ensure the systems are stringent, fair, and efficient. The Canadian federal government also committed to implementing a federal carbon pollution pricing system in provinces and territories that request it or do not have a carbon pollution pricing system that meets the federal benchmark, thus creating a federal backstop. As of 2021, the federal carbon price was Can\$30/tonne; it will increase to Can\$170/tonne by 2030. All direct proceeds from carbon pollution pricing under the Canadian federal system will be returned to the jurisdiction in which they were generated.

INFRASTRUCTURE

The United States currently has the world's most extensive CO₂ pipeline network; however, more infrastructure is needed to enable widespread deployment of CCUS in the country. For example, most of the large-scale CO₂ sources in the PCOR Partnership region are not near large CO₂ storage opportunities. Increasing the adoption of CCUS in the region will require costefficient means of moving captured CO₂ to areas with ideal geologic storage opportunities. Without the transport piece of the puzzle, there is little incentive to pursue the capture piece.

Instead of constructing many new point-to-point pipelines, a more strategic approach using prescribed trunk lines and connector pipelines would be economically advantageous for efficiently enabling widespread commercial CCUS deployment. For example, the ACTL, which had strong Canadian government infrastructure support, was designed to accomodate future expansion of CCUS. The 240-km pipeline has nearly 90% of its capacity available to accommodate future CO₂ sources. Two newly planned projects in the PCOR Partnership region involve the development of industrial CCUS hubs with shared CO₂ transport and storage infrastructure.⁶⁴ The development of additional shared infrastructure, such as pipelines, can be a strong incentive to trigger new investments.



Hypothetical CO₂ Trunk Routes

WYOMING PIPELINE CORRIDOR INITIATIVE

 \bigwedge notable example of facilitating *C* infrastructure development in the PCOR Partnership region is the Wyoming Pipeline Corridor Initiative (WPCI). WPCI was formed to promote the development of a network of CO₂ pipelines throughout Wyoming for transportation of CO₂ from emission sources (such as power plants) to suitable storage locations or for other uses (such as EOR). Under the leadership of the Wyoming governor's office and in collaboration with researchers, industries, and other state agencies, WPCI proposes pipeline routes that would cover almost 2000 miles and cross federal, state, and private lands in central and eastern Wyoming. Project development continues to progress along these pipeline corridors.

Sweetwater Carbon Storage Hub CarbonSAFE Project

The Sweetwater Carbon Storage Hub CarbonSAFE project will comprise over 100,000 acres of leased pore space and over 550 million metric tons of CO₂ storage capacity. The project will provide a carbon management solution for industrial emitters in southwestern Wyoming and across the Mountain West. In December 2023, the Wyoming Department of Environmental Quality issued three Class VI UIC permits in relation to the project, which are the first to be issued in the state of Wyoming.

Williams Echo Springs CarbonSAFE Project

Started in 2023, UWY SER, in collaboration with Williams (a midstream natural gas company), is leading a storage complex feasibility study to develop a dedicated CO₂ storage hub for current and future industries in the Echo Springs area of south-central Wyoming. The 2-year study plans to permit and drill a deep stratigraphic test well and interpret the resulting data, models, and documents for further site development. Expected outcomes from the study include confirming which of the six stacked formations at Echo Springs can store at least 50 million metric tons of CO₂.

THE BUSINESS CASE FOR CCUS

 Λ /hether from a capture-ready nearly pure CO₂ source VV associated with an ethanol plant or from the retrofit of an 800-MW coal-fired power plant, implementing CCUS is an expensive endeavor. For an industry to move forward with a CCUS project, an appropriate business model must be adopted.

Selling captured CO₂ as a commodity is the easiest business model if the buyer and seller can agree on the CO₂ sale price and a long-term contract. This type of arrangement defines a traditional CO₂ EOR situation.

Without a market price for the CO₂ and an amicable buyer– seller relationship, alternative business cases are required. To incentivize CCUS where a market does not exist, the U.S. government has established a tax credit program for storing CO₂. The value of these tax credits provides the business case to move forward with CCUS projects to offset the cost of implementation. Canada has recently proposed an investment tax credit for capital invested in CCUS projects,

with the goal of reducing emissions by at least 15 MMt of CO₂ annually.

Some CCUS projects, like those associated with ethanol plants, can bolster their business case by capitalizing on increased commodity values (more money per gallon of ethanol). Leveraging carbon markets, like the LCFS established in California or Oregon, can provide direct financial gain to an ethanol company implementing CCUS. The projects may be able to stack the financial benefits of increased commodity prices and the tax credits gained from the U.S. government. This combination is the driver for recently announced large-scale gathering and transport of CO₂ from ethanol plants in the United States.

The Canadian federal government has put a tax on CO_2 emissions (currently Can\$30/tonne). Under this situation, there may be financial benefit to capture and store the CO₂ rather than pay the tax. This potential financial benefit would be the business case for CCUS.

Political

Corporate

CUS can play a vital role in reducing atmospheric CO₂ Levels while simultaneously preserving the option of using abundant and low-cost domestic fossil energy resources. However, the scale of CCUS deployment needed to result in significant reductions will require thousands of CCUS deployments around the world over the next three to four decades. The expansion of a new technology at that rate is challenging but achievable, particularly when the technology becomes routine and impediments are mitigated. Research, development, and demonstration (RD&D) programs, such as those currently conducted by DOE's RCSP Program, are critical for demonstrating CO₂ storage in diverse geologic settings and will establish the basis for CCUS's widespread global deployment.

ENVIRONMENTAL, SOCIAL, AND CORPORATE GOVERNANCE AND CCUS

Environmental, social, and corporate governance (ESG) are intangible factors that contribute to the sustainability and ethical impact of investments. The approach to, assessment of, and reporting of ESG factors are growing considerations for investors, shareholders, and the public who seek greater levels of transparency to evaluate risk exposure. An increasingly central aspect of many ESG assessment and rating schemes is a corporation's exposure to climate change-related risks.

Despite broad awareness of the potential for CCUS within the investment and rating communities, substantial uncertainty remains regarding its more widespread deployment. As such, CCUS is undervalued in its potential for improving a company's ESG performance.⁶⁵ Perhaps as CCUS matures, it will better boost ESG ratings. In the near term, ESG factors can play a contributing role in the development of commercial CCUS projects that are founded on more robust business cases.

Working Together for

egulatory

Technical

f.conomic

ENGAGING THE PUBLIC

Public awareness and support are critical to the development of new energy technologies and are widely viewed as vital for CCUS projects. CCUS remains an unfamiliar technology to many members of the public, and local opposition to specific project proposals can be significant in some cases. However,

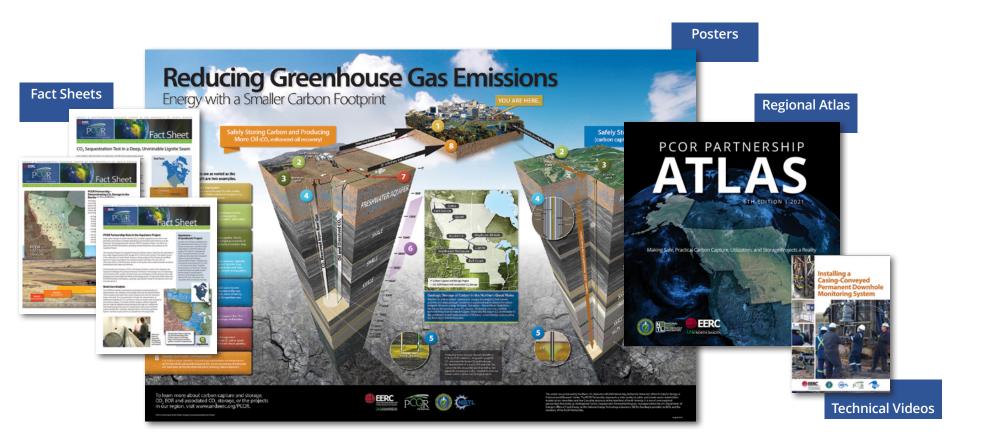
enhanced and coordinated public outreach is improving awareness of the role of CCUS as one option to reduce GHG emissions. To that end, the PCOR Partnership is working to increase CCUS knowledge among the general public, regulatory agencies, policymakers, and industry.

Educational Workshops


TAKE IT ONLINE Separate public and partners-only websites provide information in terms and context tailored to meet the needs of the distinct demographics.

TAKE IT ON THE ROAD

Engaging the public, policymakers, and industry on CCUS remains an essential component of PCOR Partnership activities. This is done through presentations and participation at meetings and public and industry events throughout the region.


TAKE IT TO PRIME TIME

The PCOR Partnership has collaborated with Prairie Public Broadcasting to provide educational activities and documentary productions.

Award-Winning Documentaries

TAKE IT WITH YOU

Scientific fact sheets, presentations, posters, and reports inform technical audiences, while products such as documentaries, presentations, the regional atlas, and nontechnical posters tell the story of CCUS for a general audience.

NOMENCLATURE

ACTL	Alberta Carbon Trunk Line	NETL	National Energy Technology Laboratory	Prefixes					
bbl	barrel	N ₂ O	nitrous oxide	Т	tera		10 ¹²		trillion
CarbonSAFE	Carbon Storage Assurance Facility Enterprise	NWR	North West Redwater Partnership	G	giga		10 ⁹		billion
CCA	Cedar Creek Anticline	O ₃	ozone	M			10 ⁶		million
CCS	carbon capture and storage	OBPS	Output-Based Pricing System		mega				
CCUS	carbon capture, utilization, and storage	PCOR	Plains CO ₂ Reduction (Partnership)	K	kilo		10 ³		thousand
CH₄	methane	PCO ₂ C	Partnership for CO ₂ Capture	m	milli		10 ⁻³		one-thousandth
CI	carbon intensity	PDM	permanent downhole monitoring	μ	micro		10-6		one-millionth
CO ₂	carbon dioxide	ppm	part per million	n	nano		10 ⁻⁹		one-billionth
CNG	compressed natural gas	psi	pound per square inch						
CO₂eq	CO ₂ equivalent	PTRC	Petroleum Technology Research Centre	Conversion	of Mass to Vo	olum	ne of CO ₂ (al	l at 1	atm)
DAC	direct air capture	RCSP	Regional Carbon Sequestration Partnership	standard t	emperature		short to	n	tonne (metric ton)
DGC	Dakota Gasification Company	R&D	research and development	0°C/32°F (16.31 M	cf	17.98 Mcf
Denbury	Denbury Onshore, LLC	RD&D	research, development, and demonstration	•	nd gas industry	<u>ر</u>	17.24 M		19.01 Mcf
DOE	U.S. Department of Energy	RTE	Red Trail Energy, LLC			/)			
DSF	deep saline formation	SDWA	Safe Drinking Water Act	20°C/68°F	(utilities)		17.51 M		19.30 Mcf Mcf = 1000 ft ³
ECBM	enhanced coalbed methane	SER	School of Energy Resources	Volume					$WCI = 1000 \mathrm{IC}^2$
EERC	Energy & Environmental Research Center	stb	stock tank barrel						
EOR	enhanced oil recovery	TDS	total dissolved solids	barrel of c	oil	Х	42.00	=	U.S. gallon
EPA	U.S. Environmental Protection Agency	UIC	underground injection control			Х	34.97	=	imperial gallon
ESG	environmental, social, and corporate governance	USDW	underground source of drinking water			Х	0.1590	=	cubic meter
EU	European Union	UWY	University of Wyoming	U.S. gallor	1	Х	0.0238	=	barrel
EV	electric vehicle	VSP	vertical seismic profile			X	3.785	=	liter
FEED	front-end engineering and design	WPCI	Wyoming Pipeline Corridor Initiative			X	0.8327		
FID	financial investment decision							=	imperial gallon
GHG	greenhouse gas			imperial g	allon	Х	1.201	=	U.S. gallon
Gt	gigatonne or billion tonne								
H₂O	water			Weight					
IEA	International Energy Agency			short ton		Х	2000	=	pound
InSAR	interferometric synthetic aperture radar					Х	0.9072	=	metric ton
RA	Inflation Reduction Act of 2022			metric ton		Х	1000	=	kilogram
IRS	Internal Revenue Service						1.102	=	short ton
ΙΤС	Integrated Test Center					~	1.102	_	SHOLLOH
LCA	life cycle analysis			Length/Are	2				
LCFS	low-carbon fuel standard				a	V	4 600		1.1.
LNG	liquefied natural gas			mile			1.609		kilometer
mg/L	milligram per liter			kilometer		Х	0.6214	=	mile
Minnkota	Minnkota Power Cooperative			hectare		Х	2.471	=	acre
MRV	monitoring, reporting, and verification					Х	0.0039	=	square mile
MMt	million tonne			acre		Х	0.4049	=	hectare
MVA	monitoring, verification, and accounting			square mi	le		640.0	=	acre
MWh	megawatt-hour					X		=	hectare
NDIC	North Dakota Industrial Commission								
						Х	2.590	=	square kilometer

CCUS UNITS AND CONVERSION FACTORS

Note: Most data in this atlas are described in metric units. However, some imperial units are used according to original data sources or industry standard (e.g., barrels of oil).

REFERENCES

- 1. https://earthobservatory.nasa.gov/features/EnergyBalance (accessed 2024).
- 2. www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed 2024). 1
- 3. Schmidt, G.A., Ruedy, R., Miller, R.L., and Lacis, A.A., 2010, The attribution of the present-day total greenhouse effect: Journal of Geophysical Research, v. 115, D20106. doi:10.1029/2010JD014287. https://pubs.giss.nasa.gov/abs/sc05400j.html (accessed 2024).
- 4. Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragão, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X., and Zaehle, S., 2020, Global carbon budget 2020: Earth System Science Data, v. 12, no. 4, p. 3269–3340, https://doi.org/10.5194/essd-12-3269- 2020
- 5. National Oceanic and Atmospheric Administration National Centers for Environmental Information, 2021, State of the climate—global analysis for annual 2020: www.ncdc.noaa.gov/sotc/global/202013 (accessed 2024).
- 6. http://data.giss.nasa.gov/gistemp (accessed 2024).
- 7. http://earthobservatory.nasa.gov/Features/Arrhenius (accessed 2024).
- 8. https://climatewatchdata.org/ghg-emissions (accessed 2024).
- 9. IEA https://www.iea.org/data-and-statistics/data-product/co2-emissionsfrom-fuel-combustion
- 10. https://ourworldindata.org/co2-emissions (accessed 2024).
- 11. www.iea.org/articles/global-energy-review-co2-emissions-in-2020 (accessed 2024).
- 12. www.census.gov/data-tools/demo/idb/#/country (accessed 2024).
- 13. https://ourworldindata.org/co2-emissions? (accessed 2024).
- 14. www.climatewatchdata.org/ghg-emissions?source=CAIT (accessed 2024).
- 15. https://unfccc.int/cop28/5-key-takeaways#end-of-fossil-fuels
- 16. www.canada.ca/en/environment-climate-change/services/climatechange/greenhouse-gas-emissions/inventory.html (accessed 2024).
- 17. www.epa.gov/ghgreporting/ghg-reporting-program-data-sets (accessed 2024).

18.	https://www.globalccsinstitute.com/resources/publications-reports- research/global-status-of-ccs-2023-executive-summary/	39.	U.S. Er emissi
19.	www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems/ how-carbon-capture-technologies-support-the-power-transition (accessed 2024).	40.	Azzolir Goreck subsur
20.	www.powerplantccs.com/ccs/cap/con/of/of.html (accessed 2024).		Plains D103 f
21.	https://archive.ipcc.ch/report/srccs/ (accessed 2024).		Labora Publica
22.	https://dualchallenge.npc.org/documents/CCUS-Chap_6-072020.pdf (accessed 2024).	41.	Enviro
23.	Noothout, P., Wiersma, F., Hurtado, O., Macdonald, D., Kemper, J., and van Alphen, K., 2014, CO2 pipeline infrastructure—lessons learnt: Energy Procedia, v. 63, p. 2481–2492.	42.	princip Interna captur
24.	Oil fields outside of the PCOR Partnership region were provided by NATCARB.	43	27914: Interna
25.	Wallace, M. U.S. CO2 EOR Survey Updated to End-of-Year 2022. Proceeding of 2023 CO2 Conference, Midland, Texas, Dec 7, 2023.	13.	captur using e
26.	Azzolina, N.A., Peck, W.D., Hamling, J.A., Gorecki, C.D., Ayash, S.C., Doll, T.E., Nakles, D.V., and Melzer, L.S., 2016, How green is my oil? A detailed look at greenhouse gas accounting for CO2 enhanced oil recovery (CO2		Quinte Limite databa
	EOR) sites: International Journal of Greenhouse Gas Control, v. 51, p. 369–379.		https:/
27.	Brandt, A.R., Masnadi, M.S., Englander, J.G., Koomey, J., and Gordon, D., 2018, Climate-wise choices in a world of oil abundance. Environmental Research Letters. 13 044027 (https://iopscience.iop.org/		https:/ Report
	article/10.1088/1748-9326/aaae76/pdf).		WWW.W
28.	Extent of sedimentary basins provided by NATCARB.	48.	www.c in-wey
29.	www.lakesuperiorstreams.org (accessed 2024).	49.	www.w
30.	http://waterquality.montana.edu (accessed 2024)		Report
31.	http://water.epa.gov/drink/contaminants/secondarystandards.cfm (accessed 2024).	50.	www.p midale
32.	www.pacificro.com/watercla.htm (accessed 2024).	51.	https:/ 2020-E
33.	http://geology.utah.gov/online_html/pi/pi-39/pi39pg9.htm (accessed 2024)	52.	https:/ captur
34.	www.extremescience.com/dead-sea.htm (accessed 2024).		ld=0
35.	https://netl.doe.gov/coal/carbon-storage (accessed 2024).	53.	Petrole (access
36.	https://ethanolrfa.org/biorefinery-locations/ (accessed 2024).	54.	https:/
37.	https://ricanada.org/industry-map/ (accessed 2024).		reache
38.	CANatural Resources Canada. https://publications.gc.ca/site/ eng/9.506002/publication.html (accessed 2024).	55.	Rostro Charao Saskat

Energy Information Administration, www.eia.gov/environment/ ssions/state/excel/transportation.xlsx (accessed 2024).

blina, N.A., Nakles, D.V., Ayash, S.C., Wildgust, N., Peck, W.D., and ecki, C.D., 2017, PCOR Partnership best practices manual for surface technical risk assessment of geologic CO2 storage projects: hs CO2 Reduction (PCOR) Partnership Phase III Task 9 Deliverable 3 for U.S. Department of Energy National Energy Technology pratory Cooperative Agreement No. DE-FC26-05NT42592, EERC lication 2017- EERC-10-21, Grand Forks, North Dakota, Energy & ronmental Research Center, August.

rnational Organization for Standardization, 2009, Risk management ciples and guidelines: ISO 31000:2009(E).

national Organization for Standardization, 2017, Carbon dioxide ure, transportation, and geological storage—geological storage: ISO 14:2017.

national Organization for Standardization, 2019, Carbon dioxide ure, transportation, and geological storage—carbon dioxide storage g enhanced oil recovery (CO2-EOR): ISO 27916:2019.

ntessa, 2014, Generic CO2 FEP database, Version 2.0: Quintessa ted, Henley-on-Thames, United Kingdom. Open access online base https://www.quintessa.org/co2fepdb/ (accessed 2024).

s://netl.doe.gov/carbon-management/carbon-storage/carbonsafe

s://www.basinelectric.com/News-center/publications/Annualort/index (accessed 2024).

v.wcap.ca/sustainability/co2-sequestration (accessed 2024).

v.cbc.ca/news/canada/saskatchewan/cenovus-selling-majority-stakeeyburn-oil-project-1.4400817 (accessed 2024).

v.wcap.ca/application/files/6215/9191/1116/Whitecap-2020-ESGprt_Final-002.pdf (accessed 2024).

v.pipelinenews.ca/news/local-news/weyburn-unit-up-for-saleale-unit-sold-1.20684078 (accessed 2024).

s://cardinalenergy.ca/wp-content/uploads/2021/03/March-9-2021-)-ESG-Report-Final.pdf (accessed 2024).

s://pipelineonline.ca/boundary-dam-hits-5-million-tonnes-co2ured-aquistore-hits-500000-tonnes-stored/#/?playlistId=0&video

bleum Technology Research Centre, https://ptrc.ca/aquistore essed 2024).

s://ptrc.ca/media/whats-new/aquistore-co2-storage-projecthed-+500000-tonnes-stored

Rostron, B., White, D., Hawkes, C., and Chalaturnyk, R., 2014, Characterization of the Aquistore CO2 project storage site, Saskatchewan, Canada: Energy Procedia, v. 63, p. 2977–2984.

- 56. www.shell.ca/en_ca/media/news-and-media-releases/newsreleases-2020/quest-ccs-facility-captures-and-stores-five-million-tonnes. html (accessed 2024).
- 57. https://actl.ca/ (accessed 2024).
- 58. https://enhanceenergy.com/
- 59. https://sgp.fas.org/crs/misc/IF11455.pdf
- 60. www.fticonsulting.com/-/media/files/us-files/insights/reports/2020/sep/ carbon-capture-utilization-storage.pdf (accessed 2024).
- 61. Global CCS Institute (www.globalccsinstitute.com/wp-content/ uploads/2020/04/45Q_Brief_in_template_LLB.pdf) (accessed 2024).
- 62. https://ccsknowledge.com/news/canadas-budget-2021-carbon-captureand-storage (accessed 2024).
- 63. https://www.pbo-dpb.ca/en/publications/LEG-2324-022-S--investmenttax-credit-carbon-capture-utilization-storage--credit-impotinvestissement-captage-utilisation-stockage-carbone#antn_1 (accessed 2024).
- 64. www.summitcarbonsolutions.com (accessed 2024).
- 65. www.globalccsinstitute.com/wp-content/uploads/2020/10/ESG-Report-2020-LR_Digital.pdf (accessed 2024).

PHOTO AND IMAGE CREDITS

Except for those noted below, all photos and images were created by the EERC or obtained from royalty-free stock.

Preface (Pages ii-iii). Denbury Resources Inc.

Page 4. Modified from Global Carbon Cycle: U.S. Department of Energy Genomic Science Program, http://genomicscience. energy.gov (accessed 2016).

Page 5. Image of Svante Arrhenius: www.nndb.com/ people/875/000092599.

Page 5. Map of average surface temperature trends: NOAA (see Reference 5).

Page 6. Industrial: Gas Technology Institute; agriculture-related processing: Lincolnland Agri-Energy; petroleum and natural gas: https://bloximages.chicago2.vip.townnews.com/bismarcktribune. com/content/tncms/assets/v3/editorial/e/29/e29d6a78-d716-5103-8094-d15a33d6c32a/5f5948317c8ab.image.jpg.

Page 7. Horia Varlan.

Page 14. Electric utility: Basin Electric Power Cooperative.

Page 22. Carbon Engineering.

Page 23. PTRC.

Pages 24–25. Denbury Resources Inc.

Page 28. Adapted from the Cooperative Research Centre for Greenhouse Gas Technologies.

Page 29. CO₂-trapping contributions. Adapted from IPCC, 2005, Carbon dioxide capture and storage: Metz, B., Davidson, O., de Coninck, H., Loos, M., and Meyer, L., eds., United Kingdom, Cambridge University Press, 431 p.

Page 29. Structural and stratigraphic trapping. Modified from https://co2crc.com.au/resources/images/ (accessed 2021).

Page 32. Paul Lowry.

Page 48. Prairie pothole region: Ducks Unlimited.

Pages 64–65. John Oleksik.

Page 74. Basin Electric Power Cooperative.

Page 75. PTRC.

Page 76. SaskPower.

Page 77. PTRC.

Page 78. Shell Quest. www.multivu.com/players/ English/7680751-shell-quest-carbon-capture-storage/ (accessed 2021).

Page 79. Alberta trunk line. www.actl.ca (accessed 2021).

Page 80. University of Wyoming.

Page 91. EPA. www.epa.gov/uic/underground-injection-controlwell-classes (accessed 2021).

Back Cover: Colton, G.W., 1856, Colton's atlas of the world illustrating physical and political geography accompanied by descriptions geographical, statistical, and historical by Richard Swainson Fisher, M.D.: New York, J.H. Colton and Company.

FOR MORE INFORMATION

The public PCOR Partnership website contains a wealth of information related to CCUS geared toward various audiences. Visit us at **undeerc.org/pcor**.

To learn more about the PCOR Partnership and its activities, contact:

Kevin Connors

PCOR Partnership Program Manager 701.777.5236 kconnors@undeerc.org

To obtain educational materials or schedule a presentation, contact:

Nikki Krueger

Director of Communications and Information Services 701.777.5428 nkrueger@undeerc.org

Energy & Environmental Research Center (EERC)

University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018 701.777.5000 | eercinfo@undeerc.org undeerc.org

